MPC: an Algorithm Improvement

Francesco Arrigo

Supervisor: Vincenzo Mulone Co – Supervisor: Giacomo Bruni

Controll Strategy Statistical Analysis

World energy-related CO₂ emission savings by technology in the 450 Scenario relative to the New Policies Scenario

Share of abatement %		
	2020	2030
Efficiency	65	57
End-use	59	52
Power plants	6	5
Renewables	18	20
Biofuels	1	3
Nuclear	13	10
CCS	3	10
	Efficiency End-use Power plants Renewables Biofuels Nuclear CCS	2020Efficiency65End-use59Power plants6Renewables18Biofuels1Nuclear13CCS3

Energy efficiency

000

SYSTEM COMPOSITION

BATTERY

Fuel Cell

The System

Controll Strategy

Statistical Analysis

Distributed Energy source Generation (by Priority)

Pv panel

Battery

Fuel Cell

Off grid Hybrid system

Energy load Goal

Electric load + Thermal load (HVAC system) Optimal Management with renewables sources

RBC & MPC

Controll Strategy

RULE BASED CONTROL

• USES ONLY current state

25

- START and STOP of FC and HVAC
- It works with an *if condition then action* sequence of commands using some threshold parameter (temperature or voltage)

Expected Behaviour :very high variability of internal condition and not optmal use of Fuel Cell(FC).

MODEL PREDICTIVE CONTROL

- USES weather forecasts
- REGULATES both FC and HVAC
- It works modelling our system and launching an optimization function w.r.t. pre-setted weights.

Expected Behaviour: *low variability of condition and in FC use. Power needed from the energy source is smaller than RBC*

RBC & MPC 3 FORM OF MPC

Controll Strategy

Dati meteo reali

output

Statistical Analysis

PLANT

 ${u}_{t} = [M]_{t} \cdot {w}_{t} + {h}_{t}$ **STOCASTIC:** we construct a model of the uncertainty to reach better performances.

Controllo a feedback

Modello stocastico dell'errore

MPC

 $B_v \tilde{v}_k$

Pevisioni

input

Performance Bound: *Forecast used are the same than future disturbances.*

DETERMINISTIC: the uncertainty between forecast and real disturbances gives us an error in the control.

RBC & MPC 3 Form of MPC SYSTEM MODEL

Controll Strategy

Statistical Analysis

The System

Discretized Thermal Power balance (ex.)

$$T_{e_{k+1}} = T_{e_k} \left(1 - \frac{\mathbf{R}_{eout} + R_{ie}}{\mathbf{R}_{eout} \cdot R_{ie}} \cdot \frac{t}{C_e} \right) + \frac{t}{C_e R_{ie}} T_i + \frac{t}{C_e \mathbf{R}_{eout}} T_{out} + \frac{t}{C_e} Q_{rad}$$

Discretized Balance of Power

$$G_{k+1} = G_k + (P_{pv} + P_{fc} - \frac{Q_{HVAC}}{cop} - P_{load})_k \cdot t$$

- Electric modeling (DC bus with battery voltage as reference)
- **Thermal Modeling** (lumped parameter model with validation through EnergyPlus Thermodynamic Model)

highest variability of the values! we need to decrease the uncertainty of the model by a Statistical Analysis of the data.

Controll Strategy

 $\{u\}_{t} = [M]_{t} \cdot \{w\}_{t} + \{h\}_{t}$

Statistical Analysis

The problem STATISTICAL ANALYSI S

Computation of auto-correlation coefficients ; (ρ) WE WANT A LINEAR Auto-Regressive MODEL! $\begin{aligned} x_{k+1} &= Ax_k + B_u u_k + B_d d_k + B_v \tilde{v}_k \\ \tilde{v}_{k+1} &= F \tilde{v}_k + K w_k \end{aligned}$

Least square methods (OLS); for finding best linear coefficient

3

Modelization and check the gaussianity of the residual

K is the deviation of the residue

Controll Strategy

Statistical Analysis

- Weather forecasts with 1 h detail show very good autocorrelation coefficients.
- The statistic procedure can be replied with high robustness with different weather forecasts sources .
- The MPC algorithm faces less uncertainties (smaller value of w): higher SMPC performances are expected through the feedback controll with respect to the Deterministic MPC.

THANKS FOR THE ATTENTION!